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Abstract. Several studies have shown that sub-mesoscales (b) in the up-front winctase (blowing in the direction op-
(SM ~1km horizontal scale) play an important role in mixed posite to the surface geostrophic velocity), strong winds pre-
layer dynamics. In particular, high resolution simulations vents the SM generation while weak winds hinder the pro-
have shown that in the case of strong down-front wind, thecess but the eddies amplify the re-stratifying effect of the
re-stratification induced by the SM is of the same order of themean velocity,

de-stratification induced by small scale turbulence, as well as (c) wind orthogonal to the geostrophic velocityn this

of that induced by the Ekman velocity. These studies havecase, which was not considered in numerical simulations, we
further concluded that it has become necessary to includehow that when the wind direction coincides with that of the
SM in ocean global circulation models (OGCMSs), especially horizontal buoyancy gradient, SM eddies are generated and
those used in climate studies. their re-stratifying effect partly cancels the de-stratifying ef-

The goal of our work is to derive and assess an analytidfect of the mean velocity. The case when wind direction is
parameterization of the vertical tracer flux under baroclinic opposite to that of the horizontal buoyancy gradient, is anal-
instabilities and wind of arbitrary directions and strength. To ogous to the case of up-front winds.
achieve this goal, we have divided the problem into two parts: In conclusion, the new multifaceted implications on the
first, in this work we derive and assess a parameterization omixed layer stratification caused by the interplay of both
the SM vertical flux of an arbitrary tracer for ocean codes thatstrength and directions of the wind in relation to the buoy-
resolve mesoscales, M, but not sub-mesoscales, SM. In Pagncy gradient disclosed by high resolution simulations have
2, presented elsewhere, we have used the results of this wotheen reproduced by the present model.
to derive a parameterization of SM fluxes for ocean codes The present results can be used in OGCMs that resolve M
that do not resolve either M or SM. but not SM.

To carry out the first part of our work, we solve the SM dy-
namic equations including the non-linear terms for which we
employ a closure developed and assessed in previous work.
We present a detailed analysis for down-front and up-front

winds with the following results: Recently, there has been a considerable interest in sub-

(a) down-front wind(blowing in the direction of the sur- mespscales (SM) which are oceanic structures with sizes
face geostrophic velocity) is the most favorable condition fOI’O(]_ km) and a life time of the order of days. If one considers
generating vigorous SM eddies; the de-stratifying effect ofthat the highest resolution O(1/A)0in stand-alone OGCMs
the mean flow and re-stratifying effect of SM almost cancel (ocean global circulation models) can represent structures of
each other out, about 10 km which is 10 times larger than SM sizes and that
OGCMs employed in thousand years runs for climate studies
have in general a%lresolution (corresponding to structures
100 times larger than SM sizes), it seems clear that a good
deal of important physical processes have thus far gone un-
represented in many OGCMs.

Correspondence tdv. M. Canuto The parameterization of SM cannot be constructed by
BY (vcanuto@giss.nasa.gov) analogy with mesoscales, M. Indeed, while mesoscales are
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characterized by a small Rossby numBer: /f «1 (where  are presently absent in such global models especially in cli-
¢ and f are the relative and planetary vorticities respec- mate studies. Therefore, a reliable parameterization of SM in
tively), mixed layer SM are characterized Bp~1 (Thomas terms of the resolved fields has become necessary to ensure
et al., 2008). Thus, the dynamics of M and SM are quite dif-the physical completeness of mixed layer mixing processes.
ferent and so are the final results for the fluxes of interest. For As MTF stressed, “parameterization of the circulation in-
this reason, the parameterizations for M that were suggesteduced by SM eddies in the presence of wind forcing is
for the deep ocean cannot be extrapolated to describe SM irequired in climate models in order to simulate the re-
the mixed layer and a new parameterization is required. stratification correctly”. To accomplish such a goal, a pa-
Most of the present knowledge about mixed layer SMrameterization: (1) must be valid for an arbitrary tracer since
comes from high resolution numerical simulations (Levy eta model for buoyancy only is insufficient because it cannot
al., 2001; Thomas and Lee, 2005; Mahadevan, 2006; Madescribe an important ingredient such as,C(@) must in-
hadevan and Tandon, 2006; Klein et al., 2008; Thomas et al.¢lude a wind of arbitrary direction and intensity since MTF
2008; Capet et al., 2008, C8; Levy et al., 2010; Mahadevarhave shown that its effect on SM fluxes is large and because
et al., 2010, MTF). These studies have revealed many interforcing in future climates is likely to be quite different from
esting features of SM, e.g., their contribution to the verticaltoday’s, (3) must reproduce simulation data and finally, (4) to
mixing of buoyancy and tracers in the upper ocean. Amongbe usable in climate codes, it must be expressed only in terms
the most salient effects of SM on global ocean properties if resolved fields, that is, the parameterization must be aver-
the well documented tendency to re-stratify the mixed layeraged over mesoscale fields. No parameterization presently
(Spall, 1995; Nurser and Zhang, 2000; C8; MTF). The effectavailable satisfies these criteria.
of SM on deep convection has been recently demonstrated We begin by considering the model independent dynamic
by Levy et al. (2009, Fig. 9) who point out a better agree- equation for an arbitrary mean trater
ment with the new mixed layer data by Boyer Montegut et _
al. (2004) south of the WBC (Western Boundary Current). Dt + Vi - Fu + 0. Fy = 0.(Ky3:7) + G (1a)
Even in non-convective regimes, one can expect a signifiyyhere the SM horizontal and vertical tracer fluxes are defined
cant cancellation between SM and small scale fluxes leads follows:
ing to the mixed layer re-stratification (e.g., C8, Fig. 12; L L
Klein et al., 2008); Hosegood et al. (2008) estimated thatFy =u't’, Fy =w't’ (1b)
SM contribute up to 40% of the re-stratification process. o
In addition, as noted by Lapeyre et al. (2006) and Klein et'" Eds: (1a,b), an overbar indicates averages over subme-
al. (2008), the surface layers re-stratification is compensate&oscales' To.derlve a parameterization for OGCMs that do
by de-stratification of the ocean interior pointing to an in- "0t resolve either SM or M, one must further average the

teresting dynamical connection between surface and interioP"eseNt results over the mesoscale fields, a problem we have

processes. Another important effect of SM concerns the loStudied elsewhere (Canuto and Dubovikov, 2010).

cation of the WBC that is shifted south by 4nd whose The methc_)d we employ to derive the SM parameterizg—
off shore extension penetrates further to the east, in bette}iO" iS analytical and thus it can be followed and checked in
agreement with observations (Levy et al., 2009). An earlierdetall. The final result for the vertical SM flux for an arbi-
study by Treguier et al. (2005), who found a significant in- trary tracer under arblt_rary buoyancy and_wmd condltlon_s, is
crease (from~30 Sv to~70 Sv) in the barotropic transport also expressed analytically. The model includes non-linear
in the Gulf Stream when moving fronP 1o 1/6” resolution interactions. To obtain the desired results, one carries out
was recently confirmed and the inclusion of SM further in- threg steps: first, one.s.olves n ',ZOLfr;.erl SPace the SM dy-
creased the transport by50 Sv. Finally, the structure of the Mam!C equati:ons describing tié, w I 2 |e]fis, sgco/n.d, one
MOC (meridional overturning circulation) was also signifi- constructs t € seconq-order correlation functign’ in k-
cantly affected by SM not so much in its intensity as to its SP2C€ and third, one integrates the results over all wave vec-
location (Levy et al., 2009, Fig. 12) tors to obtain the fluxes in physical space in terms of the
This brief summary of some of the results of very high rgsolved fields, to be u§ed in Eq. (1a)._The procedure was
resolution (1/58, ~2 km) regional studies highlights the im- first worked qut for the linear case by Killworth (_1997) and
portance of SM and thus the question arises as to how mucfpr the non-linear hcaseh b?]/ Canuto .and Dupowkov (2.095’
of SM physics is actually accounted for by global OGCMs. 2006, CDs, _6)' Though the dy”‘?‘m'c equations describing
Even today's highest resolution global ocean model&ld the SM velocity and temperature fields are formally the same
(Maltrud and McClean, 2005; Sasaki et al., 2008) are not&s those describing mixed layer mesoscales that were dis-
able to capture the SM field and much less are in the positiorfuSSed in Canuto etal. (2010), in the present case they must
to dq so the OGCMS coupled to an gtmqspheric model used 1p,_j 17.v, 1w, where @ W) represent the mean flow,
in climate StUdle_S yvhere the resolution is €)(but gener-  small scale vertical mixing is represented by the first term in the
ally lower. The significant global processes revealed in goingright hand side of Eq. (1a) whei&y is the vertical diffusivity,G
from 19 resolution ¢~100 km) and 1/5%resolution (2 km) represents external sources and primes denote submesoscale fields.
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be solved in the regime appropriate to SM, namely for akinetic energy), that is, the condition of applicability of the
Rossby numbeRo=¢/f=0(1) rather tharRok1, as in the  present treatment is predicated on the assumption:

case of mesoscales. In addition, SM are trapped in the MLE < K (10)
while mesoscales extend throughout the entire water column SM
and form coherent structures (Provenzale, 1999). which we shall check several times in the following. Fur-

The key difficulty in solving the SM dynamic equations is thermore, following Killworth (2005), we adopt the approx-
the presence of non-linear terms whose closure is expresseathation that due to the mixed layers strong mixing, one can
in Eq. (3a) below. Since the latter is a key ingredient of theneglectr, in the SM equations. Anticipating our main result,
present model and since the original derivation (Canuto andhe vertical flux that enters Eq. (1a) will be shown to have the
Dubovikov, 1997) is somewhat involved, in Appendices A following form:
and B we have attempted to find a way to present a mor + _
physical approach to Eq. (3a) with the goal of highlightingeazFV =us VT (1)
the physical rather than the technical features of Eq. (3a). whereuJSr plays the role of a bolus velocity. Singeis smalll,

In addition to the derivation of the closure relations one may make the analogy with the mesoscale bolus velocity
(Eq. 3a), there is the issue of the assessment of Eq. (3ahore complete by adding to Eq. (1d) the temﬁ?z, where
when applied to flows different than the present one so asugr is found from the continuity Conditioﬁkwg_'_vl_[.ug:o
to justify their use in the present context. Such an assessKillworth, 2005).
ment was made using data from freely decaying flows, 2-D  The organization of the paper is as follows. In sec.2 we
flows, rotating flows, unstably stratified flows, shear driven discuss the dynamic equations for the SM fields in the ML
flows, DNS data, etc. and the results were in good agreeand apply the turbulence closure model to the non-linear
ment with the data (see Canuto et al., 1999 and referencegrms; in Sect. 3 we present the forma#?, and /A, which
therein). Even so, we consider such an assessneeessary  we derive in Appendix C; in Sect. 4 we derive the explicit
but not sufficientor the credibility of the parameterization of form of the SM kinetic energk sy in terms of the resolved
SM fluxes derived below. The additional requirement con-fields that, together with the results of the previous section,
sists in assessing the model predictions against results frorsompletes the problem of expressifigi, in terms of re-

SM resolving simulations. A first simulation corresponds to splved fields in the presence of both frontogenesis and Ek-
a system forced only by baroclinic instabilities and no wind man pumping. In Sect. 5 we study the case of a strong wind
(Fox-Kemper et al., 2008, FFH) while a second one corre-when the Ekman velocity exceeds the geostrophic one. We
sponds to a flow under realistic wind and buoyancy forcingshall show that when a strong wind blows in the direction
(C8, 0.75km resolution; MTF, 1km resolution). They will of the geostrophic velocity or 67 b, it tends to de-stratify

be discussed in Sects. 5-7. the mixed layer but at the same time it generates SM that

The following two conditions must be further satisfied by tend to re-stratify the mixed layer. On the other hand, when
an SM parameterization: (a) it must reproduce existing datahe wind blows in directions opposite to geostrophic velocity
and (b) it must predict new features to be assessed when sug to v, it re-stratifies the mixed layer, an effect that is
data become available. In this context, it must be mentionedtrengthened by the re-stratifying effect of SM. In Sect. 6 we
that our work was posted as an OS Discussions (Canuto angompare the model results with the data from the SM resolv-
Dubovikov, 2009, CD9) before Dr. A. Mahadevan kindly ing simulations of Capet et al. (2008). In Sect. 7 we compare
sent us the MTF manuscript. Our model would have beerthe model results for the no-wind case. In Sect. 8, we present
falsified had its predictions turned out to be inconsistent withsome conclusions.

MTF data. However, the model predictions in CD9 not only
did not contradict the simulation data, but called attention to
the same qualitative SM effects as MTF did in their paper. 2 Sub-mesoscales dynamic equations near the surface

To make the SM parameterization usable in OGCMs, we ) ) i .
Consider an arbitrary tracer fietldand separate it into mean

looked for analytical solutions of the SM dynamic equations ) o i X

and to achieve that goal, we introduced the assumption thaﬁ;nd fluctuating pars=t+c.. The dynamical equation for
the fluxes are mostly contributed by their spectra in the vicin-t1€ SM tracer field” is obtained by subtracting the equation
ity of their maxima. Though this introduces errors of severalfo,r the mean tracef from that of the .total fieldr. Smce
tens of a percent, the advantages of obtaining analytic expre§h_IS procedur_e is well knovyn and entglls only alge_bra|c steps
sions for the vertical tracer flux in terms of resolved fields in With no physical assumptions, we cite only the final result
the presence of both frontogenesis and Ekman pumping, wad€ notation is explained in footnote 1):

worth exploring. Another approximation which has helped p;r' = —U’ - vT — Of — 0% + 3Z(Kvazf’) (2a)

us obtain analytical results follows from the assumption that
the SM kinetic energK sy exceedsk =u°/2 wherei is the
baroclinic component of the mean velocity (we call atten- where the function®’s represent the non-linear terms. As
tion to the fact thak is considerably smaller than the mean expected, the average of Eqgs. (2a) yields identically zero. It

O =u -Vyt' —u -Vut/, Oy =w't', —wr/,

WWW.0ocean-sci.net/6/679/2010/ Ocean Sci., 6, ®23-2010
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must be noted that in Egs. (2a) no closure has been usedhere the scalé:kg1 may be interpreted as the SM hori-
for the non-linear terms. Without the non-linear terms, zontal length scale. As it was shown in detail in CRg,is
Egs. (2a) formally coincide with those describing mixed obtained from the solution of the eigenvalue problem which
layer mesoscales tracer fields studied by Killworth (2005).is derived from the eddy dynamical equations (Eq. 2e). In
The difference in representing M and SM lies in the scalesthe limit of a strong non-linearity represented by:

over which the averages (represented by an overbar in - - 1

Egs. 2a), is taken: in the case of mesoscales, averages akesm > K, K = Eﬁz (3b)
over scales exceeding mesoscales while in the case of subme- -

soscales, averages are meant to be over scales smaller thasere K is the kinetic energy of the baroclinic component
mesoscales but larger than submesoscales. Furthermore, @f the mean velocity (defined in Eq. 4b), the solution of the
describing mesoscales, one IRz« 1 andRix>>1, whereasin  eigenvalue problem yields the following result:

the case of sub-mesoscales, bBify Ri~0(1). Following 1,1

Killworth (2005), we neglect the terms containifigandz’, kom=t~rs=m S(N/IfDh (3¢)

in which case the first of Egs. (2a) simplifies to: wherers is the Rossby deformation radius of the mixed layer
/= / ) _ . (ML) of depth h and where N is the buoyancy frequency in

T +u- Vgt =—u -Vt — Oy (2b)  the ML. Relation (Eq. 3c) is in qualitative agreement with

other evaluations of the submesoscale length scale discussed
in the literature (Boccaletti et al., 2007; Thomas et al., 2008;
Fox-Kemper and Ferrari, 2008). In Fig. 9 of Fox-Kemper
et al. (2008), the authors, using simulation data, plot SM
length scales defined using different variables and in unit of

Without the non-linear term, Eq. (2b) coincides with Eq. (2)
of Killworth (2005) for the mesoscale buoyancy field. Within
the same approximation, the equation for the horizontal SM
velocity is given by:

du'+u-Vyu'+u' Vyu+ fe;xu' = —p~ vy p'—0F (2c) the Stone length scale which is of the order of the deforma-
tion radius.
oY =u -Vyu' —u" Vau' (2d) Equation (2e) together with Eqg. (3a), represent a stochastic

Langevin equation which has played a major role in turbu-
wheree, is the unit vector along z axis. Next, we Fourier lence modeling studies (Kraichnan, 1971; Leith, 1971; Her-
transform Egs. (2b,c) in horizontal planes and time. Follow-ring and Kraichnan, 1971; Chasnov, 1991). The advantage
ing Killworth (1997, 2005), we keep the same notatidnr’ of the Langevin equation is that it is linear in the fluctuat-
for the submesoscale fields in the w space and assume that ing fields and thus allows one to compute second-order mo-
when Egs. (2b,c) are Fourier transformed, the mean figlds ments while the original Egs. (2b,c) are non-linear and do
andVyT are constant in time and horizontal coordinates. Wenot allow an analytical computation of such correlation func-

thus obtain: tions. The key problem is to find a model for the non-linear
terms Q’s that leads to a Langevin equation whose corre-
itk-u—w)t'=—u'-VyT — Qf lation functions are sufficiently close to those of the orig-
inal Egs. (2b,c). This is the closure problem for the non-
itk -it — o) =—u'-Vyu— fexu' — Q) —ikp™p linear terms. In CD5, we used the closure (Eq. 3a) derived
by Canuto and Dubovikov (1997) and solved the eigenvalue
dow'=—Vy-u'=—ik-u (2e)  problem to which the mesoscale dynamic equations were

o i . shown to reduce. Closure (Eq. 3a) has a simple interpreta-
where we have added the continuity equation that providegjon within the mixing length approach. In fact, the first two
the z-derivative ofuw’. We recall thatr’, u’ and the non- e |ations are quite standard wigh ! being the characteristic
linear terms are functions of the horizontal wave vector andime scale while the third relation containing the character-
frequency k, ») and z, whilex is a function of z only and  jg;ic |ength scale (Eq. 3c) and velocity, is the only possible
VT is z independent. _ combination that leads to a time scale.

_Equations (2e) form a closed system whose solution pro-  the advantage of the Langevin equation is that it allows
vides the necessary ingredients to construct the vertical fluxg 1 express all SM fields in terms of the SM horizontal ve-
(Eq. 1b) provided one has a closure for the non-linear termslocity u'(k,w) which, in turn, allows us to express the spec-
a problem discussed in Appendices A and B with the resulty,m of any second-order moment in terms of the SM energy
that, in the vicinity ofk = ko where the SM energy spectrum gnectrum and of the resolved fields. Such a program, which
E(k) has its maximum, the non-linear ternisy have the e giscuss in detail in Appendix C, was previously used by
following forms: the authors to parameterize mesoscales in the ocean interior

T / u / CD5, 6) and in the mixed layer (Canuto et al., 2010). The
Ok, ©) = xT(k, ), Ok, ) = yu'(k, o), (32) Enain dif?erence in the case 0)1/‘ SI\(/I is in the treatment)of the
15, eddy velocity field. In particular, the rotational component

X =koUsm, Ksm= EUSM of the SM horizontal velocity calledg in Eg. (C9), does

Ocean Sci., 6, 67%93 2010 WWWw.ocean-sci.net/6/679/2010/
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not coincide with the geostrophic velocity. In fact, Eq. (C12) section. Before doing so and for future reference, we next

shows that, using the third of Eq. (C6), in the limit (Eqg. 1c), derive the explicit form of the vertical flux itself. Integrating

uR can be represented as follows: Eq. (4a) over z with the boundary conditiéky (0)=0, we ac-
iko-1p U count for only the z-dependency @fwithin the mixed layer.

up=— P P g, ISM (3d)  Thus, we obtain:
1+3Ro? |f1e

. . Fy=—«xy-VyT (6a)

whereRo is the Rossby number and is the SM pressure

field. Thus, when treating mesoscales that are charactemwhere the submesoscale diffusivity is given by:

ized by smallRg, the first relation in Eq. (3d) reduces to 1

the geostrophic relat|om_q—>ug=—ikp*1p/. Onotherhand, ,, = z(l + 7/2) [;; _ yieZ X ;;} (6b)

since SM are characterized Ro~1, we must use the com- |f]

plete form of Eg. (C12). This is the reason why we have .

not calledur the geostrophic component and the divergent __ 1 [~
componenkp (Eg. C11) the a-geostrophic one. ulz)=z f”dz
0
3 Sub-mesoscale vertical tracer flux From Eq. (6b), one observes that at the bottom of the ML,

z=—h, we have that:
Following the program we have outlined at the end of the
previous section, in Appendix C we show how to express#(—h) =0, kpu(—h) =0, Fy(~=h) =0 (6¢)

w'(k, w) andz’ (k, ©) in terms of the SM horizontal velocity which is a good approximation since SM eddies hardly pen-

u’'(k, w) and of the resolved fields; that, in turn, allows us to . :
T etrate the bottom of the mixed layer (Boccaletti et al., 2007).
express the spectrum 6, = w’t’ in terms of the SM energy We also have the additional relations:

spectrum. Finally, integrating the spectra over all wavenum-

bers, we obtain the following SM vertical tracer flux %(0)=0, ky(0) =0, FAy(0)=0 (6d)

-1
o Fy=ul-VyT, ud=— (1+y2) |:'17—y iez><ﬁ:| (4a)

/] 4 MS kinetic energy in terms of resolved fields
where:
0 Assuming that the production & sy occurs at scaleé~rg
rs| f| 1 - _ i b and since the eddy kinetic energy equation shows that the

V= TUsm R0 “T"T h _/”(Z)dz’ (4b)  yertical buoyancy flux?? acts as the source &fsy, we em-

—h ploy the following relations:
ez is the unit vertical vector an®o is the Rossby number 0

defined in Eq. (3d). It is worth stressing that in the second
relation in Eq. (4a), the second term in the square bracke{(s'vI -
is a vector: in fact, althoughy, xu is a pseudo-vector (cross
product of the vectors, andu), f is a pseudo-scalar which

ClrsP0)?3, Pk =<FP>=h"1 f d:F%(:)  (7a)
—h

In the case of 3-D turbulence where kinetic energy cascades

is the scalar product of the vectey and the ps_;gdo-vector from large to small scales and a Kolmogorov spectrum sets
2§ and thus the product is a vector. The variablmay be i, ‘1he first relation in Eq. (7a) is simply the statement that

interpreted as the ML baroclinic part of the mean velocity. .o ction=dissipation with the former is defined in the sec-
The parameterization (Eq. 4a,b) is obtained under condition,, Eq. (7a) while dissipation is represented by a Kol-
(_Eq_. 1c) and can be obtained from Eg. (7a,b) of CD9 in themogorov form. In such a cas€=(3/2)K o(1+A,) where
limit (Eq. 1c). A.>0 accounts for the contribution t&sy of the energy

. + .
In Eq. (4a) the velocny:s_ may b_e interpreted as tiseib- spectrum ak <kg andKo is the Kolmogorov constant whose
mesoscale induced velocityhich is a counterpart of the | ;o ranges between 1.4-2.2. With=1, Ko=2, we have

mesoscale induced velocity. As noted earlier, to make thecze, However, in the 2-D case of interest here, cascade of
analogy with the mesoscale induced velocity more completeKSNI to smaller scales does not take place. Instefégiy

and since in the mixed layer, is small due to the SONG  ransforms into SM potential energy which we denote by

mixing, one may add _to I_Eq. (4a)_t_he temgrz, wherewg Wsm. Then, in the quasi-stationary case, the production of
Is found from the continuity condition: Ksm given in the second of Eq. (7a), approximately equals
dwd +Vy-ul=0 (5) the production ofWsy. Since the latter cascades to smaller

) ] ] ~ scales where is ultimately dissipated, we have:
The only variable in Eq. (4b) that is not yet parameterized

is the SM kinetic energyKsy which we study in the next Wsm = C’ (rsPx)?/® (7b)

WWW.0ocean-sci.net/6/679/2010/ Ocean Sci., 6, ®23-2010



684 V. M. Canuto and M. S. Dubovikov: Mixed layer sub-mesoscale parameterization — Part 1

whereC’ depends on the spectrum Bfsy. If we further 5 Wind driven flows
denote byl'sy the ratio of the SM kinetic and potential en- _ . _ _
ergies, from Eq. (7b) we conclude that the first relation of In this section we study flows driven by strong winds when

Eq. (7a) is satisfied with: the Ekman velocity exceeds the geostrophic mean velocity
) and compare with results obtained in the submesoscale re-
C =TsmC’, TI'sm= Ksw/Wsm (7¢)  solving simulations of Capet et al. (2008). To obtain results

Itis worth noticing that relations analogous to Eg. (7a,b) holdin an analytical fornzw, we fulr.ther'assume that the ML turbu-
true for mesoscales as well with the proviso that the con-€ntviscosityy~10"“m"s™ is z-independent. Under these
stantsC’, T and thereforeC, are different for SM and M conditions, the mean velocity field can be decomposed into
due to their different dynamics since, as already mentioned9€0strophiaig and Ekmarug components; with the x axis
SM are trapped in the ML while M form coherent struc- &l0ng the wind direction, we have the relations:

tures throughout the entire water golumn and thus entail thg,E = Aéfa(?), ve= (f/|f)AeB(),

dynamics of the deep ocean. Using a mesoscale resolving

simulation, Eq. (7a) was validated in more than 70 differentA = (vf)%uZ, ¢ =z/8p, 8¢ = (2v/f)"?

mesoscale resolving simulations (Canuto et al., 2010). In the . . B
next sections, on the basis of Capet et al. (2008), we estimatd(§) = €O +8ing, f(6) = —da(§)/9¢ (82)
thatC~6. Even though at present we have determi@esh  wherepu? is the surface stress adg is the Ekman layer's
the basis of only one simulation by C8, we shall show be-depth. Below we analyze flows driven by winds of different
low that the variable of interest to OGCMs, the tracer flux, directions with respect to the geostrophic component of the
is only weakly dependent ofi. Substituting Eq. (6a,b) and mean velocity.

rs=Nh/m|f| into Eq. (7d), we obtain the following alge-

braic equation foK sy: 5.1 Down-front winds

Kg{\,lz = %21+ y®) 7 thrs(V — y(f/IfDez x V) (7d)  Down-front winds (blowing in the direction of the surface
geostrophic velocity) drive dense water over buoyant one and

_ ) 0 N provide favorable conditions for the generation of subme-
-Vub, V=h" /Zu(Z)dZ soscales (Thomas, 2005; Thomas and Lee, 2005). We have:
—h Mg =up+ SgZ, Ug = 0, uo, Sg >0 (8b)

which is however not convenient for the computatiork@w  \yhich corresponds to an horizontal buoyancy gradient given
since the latter enters into the right hand side of Eq. (7d)by:

through the variableg, as one observes from Eq. (4b). From

Egs. (7d) and (4b), one derives the following equationyfor Vb = — fSgey (8c)
Agy* — A3y®—y?—-1=0, y>0, N°>0, (7€) It is worth noticing thatSy is a scalar sincey=e, xey is the
cross product of the two vectoes (the unit vector along the
where: Earth radius) andy (the unit vector along the wind direction)
A4=n2(2C)3/2(f/|f|)(ezxV*)«s, (79 which is a pseudo-vector. To obtain the submesoscale flux
and its z-derivative, we need to compat@ndz defined in
A3=72(2C)% Vs, Vy= V/(h|f]), s=— N~2Vub Egs. (4b), (6b), where=ug+ug. Assuming that the mixed

) . ) layer thickness h is considerably larger than the depth of the
the vectors being the slope of the isopycnals. Equation (7€) ekman layer so that the Ekman numbess2h 2«1 and

is valid under the condition ¢?/%8 <1, from Eq. (8a,b) we derive that:
K 2y%K S 1
sm  r3f <u>=h" / u(z)dz, (8d)
which is the same as condition (Eg. 1c¢) expressed in terms of —h
the resolved fields. We assess this condition in detail in both 1 ¥
strong and weak wind cases. <U> = ug — ESgh, <> =— —AEY?
In summary, for OGCMs that resolve M but not SM, the £

parameterization of the z-derivative of the vertical SM tracer __ ¢ 1 ~ f ¢ 172
flux is given by Egs. (4a, b) and (7e—f). u=Ae O‘({H—Sg(z—i_ih)’ v:_A[e PEOTE ] (8e)

[f1
To illustrate the solutions we have just derived, in the _ . )
next sections we consider three important cases: (1) stron§ Strong wind ('afgef_tha” the geostrophic wind) is repre-
wind driven flows, (2) wind and buoyancy driven flows, Sented by the relation:
(3) buoyancy-only driven flows. A/h > Sq (8f)
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Let us now study the z-derivative of the submesoscalepositive. Thus, we conclude that the down-front wind gen-
buoyancy flux which we obtain substituting Eq. (8c,e) into erates the most vigorous SM eddies, in agreement with the

Eq. (4a) witht=b. The result is: results of Thomas (2005), Thomas and Lee (2005), Thomas
_ et al. (2008) and Mahadevan et al. (2010) tHatvn-fronts
d; F\? = |f|SgA (1 + yz) (9a)  winds provide the most favorable condition for SM genera-
tion.
¢ 12 ¢ 1 1 As discussed in the previous section, the variabls so-
[e BE)+E ]_V efa@)+A SQ(Z+§h) lution of Eq. (7€) in whichA3 4 are given by (making use of

Egs. 7f and 10a):
As one can check, the z-derivative of this expression is neg-
ative which implies that the SM vertical buoyancy flux re- o4, — n(2C)3/2i (AE n }hsg>, 243 (10c)
stratifies the ML. Let us compare the latter effect with that N2h 6
of a down-front mean wind that de-stratifies the ML since S
“Ekman flow advects dense water over light” (Thomas et—_ n(zc)3/2_9hAE1/2(1 _ E1/2>

al., 2008). In the approximation of strong mixing, in the N2
z-derivative of the mean advection eV b, the largest | the case of a strong down-front wind satisfying condition
contribution comes from the baroclinic tenVy b (in fact, (Eg. 9¢) and withE<1, we have|As|>|A4| and the first

when we differentiatez-Vyb w.rt. z, the mean velocity term in Eq. (7c) may be neglected. Then, we obtain:
u=<u>-+u may be substituted by the baroclinic component

u since the z-derivative o¥;b may be neglected). From s o f 2HN? /3 e
Eq. (8c,e) we have: y ~ (—Ag) P =0V —sa) E / (10d)
9
~ o 7 12
u-Vpb= —|f]SgA [egﬂ@) +EY ] (9b) Next, we discuss condition (Eqg. 7g). Using Eqg. (8e) for the

which we compare with Eq. (9a) in the case of a very strongcase of a strong down-front wind, we obtain:
wind: ~ 1

K= —A2<E1/2 - 2E) (10e)
Ro>1 ie y<«1 (9¢)

) N _ Substituting this result into Eq. (7g) together with Eq. (10d),
Under this condition, we may approximate Eq. (9a) as fol-\ye optain:

lows: ) Lo\ 13
3. F2 ~ | f|SqA| e EY2| =—u.-Vyub od _ o2 (TAE

R~ 11854 p) + E2] l () (1-2E )(4h2ng <c (200
The implication of this relation is thahe re-stratification
by SM largely compensates the de-stratifying effect of th
mean flow,a conclusion in agreement with Mahadevan et
al. (2010). To express the eddy kinetic energy in terms of
the resolved fields, we first find from Eq. (7d):

h Up-front wind (blowing in the direction opposite to that of
ESQ)’ (10a)  the surface geostrophic velocity). In this case, the contribu-
tion of the baroclinic component of the mean flow to Eq. (1a)
Voo }AiEl/z (1 B El/z) is given by Eq. (9b) and has the sign opposite to that in the
Y20 previous case since nofy<O0, i.e., in this cas@ leads to a
re-stratification of the ML.
Substituting Eq. (10a), together with Eq. (8c), into Eq. (7d), |t is worth treating strong winds first. In this case, the first

éNhiCh is amply satisfied in the simulations of Capet et
al. (2008).

5.2 Up-front wind

1
V == Vxex + Vyey, Vx == E <AE +

we obtain: term of Vi in Eq. (10a) dominates, we havg>0, ;<0 and
32 32 N1 thgs the gxpression in the square bracket of Eq. (10b) is neg-
Kgy =—(20) (1+V ) rsh|f1Sq (10b)  ative. Using the relationl+y2) 1 = Ksu/(Ksm + r2f?),
we conclude that the only solution of Eq. (10b)&gm=0
(/1D Vy—ry W] which implies thasubmesoscales are not generated

We recall that in real flows the mixed layer depth exceeds the On the other hand, in the case of weak winds when sub-
Ekman one and thus in Eqs. (10a) we havel. Inspec- Mmesoscales are generated, they re-stratify the ML. Thus, the

tion of relations Eqs. (10a,b) shows that basy, contribute re-stratification effect of t_he mean flow is syrengthened by
. . S ’ .. that due to SM, a conclusion in agreement with the results of
with the same sign to the SM kinetic energy. In addition

under condition (Eq. 8b) thaly>0, these contributions are Mahadvan et al. (2010).
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5.3 Wind perpendicular to the geostrophic velocity {[e;ﬂ(g)JrEl/z] —y [e;a (§)+A‘1Sg(z+}h] } Vy m
2

In such flows we have: ) )
Since  from Fig. 11 of C8 we have

vg=vo + Sgz, ug=0 (11a) 0810° %Cm1<|vyT|<2.710° 9%Cm1, we use

|VyT|=1510"° %Cm™. As for the buoyancy frequency

N, we use the characteristic valde=10"3s"1. Next, we

Vyb = | f1Sgex (11b) need the values oA\, Sq, &, 6g and Kgy defined in the

heprevious section. From the C8 data presented in Fig. 10, we
Tderive the following results:

and thus:

In contrast with Egs. (8d—e) and (10a), in this case, t
geostrophic component contributes to the y-projections o

<u>, 1, andV. In particular, we have Sg~6x10%st, A~6x102ms?, (12b)
1

2Vy=AE, 2Vy=—% [AEl/2 (1—E1/2)+6hsg} (11c) sz~ 10m h~40m Ksy~ 1.8 x 103 m? 72

Substituting this relation into Eq. (7d), we obtain: While for the determination of andSgy we need the profiles

1 of the projections of the mean velocii#(z), in their Fig. 10,
Kg{ﬁ:C?’/z <1+y2) rsh| f1Sg[Vx+v (f/1fDVy] (11d)  C8 present only the absolute valli&z)|. However, assum-
] ) ing that the wind blows in the down-front direction, one can
Inspection of relations Eg. (11c,d) shows that the COMPO-gxtractA andsg from their Fig. 10. Finally, from Egs. (12b),

nentsVyy contribute toK'sy with the opposite sign. Still,  (4p) with rs=(N /7| f) and Eg. (10e), we derive that:
in the case of a strong wind corresponding to a smathe

first term in Eq. (11d) dominates which yields a positkey ~ » =03, K =11x 10*m?s2, (12¢)
if Sg>0. In this case, the direction of the wind coincides with )

that of the horizontal buoyancy gradient (up-gradient wind). £ = (6£/h)” = 1/16

Under the same conditiosy>0, the baroclinic component of

u de-stratifies the ML since in this case instead of Eg. (9b),
we have:

Using this value of/ in Eq. (7€) together with Eq. (10c), we
derive that:

%-Vyb=|f|SqAe*a(?) (11e) C=6 (12d)

which has a positive z-derivative and thus de-stratifies theRegrettably, the C8 data are the only ones available that al-
mixed layer, while SM tend to re-stratify the mixed layer. As lowed us to estimate the parameter C and other data would
one can see from Egs. (9b) and (11e), in both cases (Sect. 5.bp welcome to confirm Eq. (12d). Fortunately, as relation
and (Sect. 5.3) “Ekman flow advects dense water over light’Eg. (10d) shows, the dependenceyobn C is rather weak.
(Thomas et al., 2008). On the contraryyif;b has adirection  In addition, under condition (Eq. 9c), which is satisfied by
opposite to that of the wind (down-gradient wind), so that the first result (Eq. 12c), in Eq. (12a,e) the terms lineay in
S¢<0, strong winds tend to re-stratify the mixed layer and do are small compared to the main terms which do not contain
not generate submesoscale eddies. y. Thus, we conclude that in the case of a strong down-front
In conclusion, our analytical results for flows driven by wind, the effect ofC on the SM tracer flux is relatively weak.
wind and baroclinic instability with different directions of Next, substituting Eq. (12b,c) into Eg. (1c), one can see that
the wind and the buoyancy gradient, are in agreement witlthe condition is amply satisfied. Finally, in Fig. 1 we com-
the results of eddy resolving simulations by Mahadevan etpare the z-profile of—azF\f (z) from Eq. (12a) with that of
al. (2010). Fig. 12 of C8 (dashed line). In Fig. 2, we compare the pro-
files of the quxesFJ (z) from the present model:

. o : . . 1
6 Testing the SM parameterization against simulations F\fz(l—l—yz) A (12¢)

with wind and buoyancy

In this section, we compare our model results with Capetet) (1_ ¢ _ i } —1¢0, /.,

al. (2008, C8). We begin with Fig. 12 of C8 which gives {(1 et cost+22/h)3 y[aEe Sine2A 787G ZO)“
d, F\f (z) which we compare with our model (Eq. 4a). To do _

s0, we assume that the directionf; 7 coincides with that Vi T|

of Vb and that the wind blows in the down-front direction.
Then, in analogy with Eq. (9a), from Egs. (4a) and (8a) we
obtain:

with that of C8 which we compute using C8 data for the z-

derivative of the flux shown in Fig. 12. As one can observe,
the profiles of the fluxes are quite close throughout the mixed
E)ZF\f:A(lerz)*1 (12a) layer depth. As for the profile o#BZFJ(z), they are quite
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present model

C E Capet et al.
=30 -30

—40t —40f . ]
~1.0 —0.5 0.0 0.5 1.0 0.00 0.05 0.10 0.15 0.20

6 OF
JazZ

o0 u(m s1)

(°Cs™)

] ] ) Fig. 3. Absolute value of the mean velocity considered in the
Fig. 1. —9; Fy) (2) for ICCO simulation data by Capet et al. (2008) present analysis which corresponds to the case of a down-front wind
(dashed curve taken from their Fig. 12) and for the present modeEnd which is given by Egs. (8a,b), (12b) (solid curve) and the one
(Eq. 12a) (solid curve). computed in ICCO simulation of Capet et al. (2008) (dashed line

which is taken from their Fig. 10).

OF - - - -
o [
: no wind (Fox-Kemper et al., 2008, FFH) which can also be
-top * E used to test of our model predictions. Following FFH, we as-
sume that the mean velocity is in thermal wind balance with
E _s0kb > 3 the mean buoyancy field and that the mean buoyancy gradient
w does not vary inside the mixed layer, i.8,=f le;xVyb
: ] is z independent. Irrespectively of the surface valué: of
—30F E from Eq. (4b) and the second of Eq. (6b), we derive that:
§ § e 2z+h b, u 1 h b 13
—40F_— . . . . ] u_ﬁ( Z+h)ezxVyb, u_ﬁ(zjL )ezxVy (13a)
0 2 4 6 8 10
10°F}(*Cms™) TakingT=b in Eq. (6a,b), and using Eq. (13a), the buoyancy

flux is given by:
Fig. 2. Profile of the vertical heat fluf\-,r(z) for the ICCO simu-
lation data by Capet et al. (2008) (dots) obtained by integrating the h2
dashed curve in Fig. 1, and for the present model (Eq. 12c) (solidfFVv (z) = ®(y) 16/7]
curve).

(1-£2)1Vubl?, (13b)

f=1420L o) =2 .
close in the upper half of the mixed layer but differ some- 1+y
what in the lower half. We think this is due to the similarity with:
of the mean velocity profile (Eq. 8a) with that in the C8 at '

small depths and by an unavoidable difference in the |0W€rFV(0)=0, Ry (—h)=0, Fv(—h/2)=<I>|VHl_7|2>0 (13c)
part of the mixed layer due to the different profiles of the ver-

tical viscosity used here and in the C8 simulations. While in To complete this parameterization 8§, y must be obtained

our analysis we adopted an Ekman profile corresponding tdrom solving Eq. (7e). Substituting Eq. (13a) into the second

av(z) = const., C8 adopted a more realistic modelifar). of Eq. (7d), we obtain:
In spite of that difference, the profilég(z)| compare well, N
as seen in Fig. 3. V= Eez X Vb (14a)
7 No-wind case — Buoyancy only Substituting this result into Eq. (7f), we obtain:

dditi h listi died b h d 2 3/2p:—1 | fI?N?
In addition to the realistic case studied by C8, there are datgy, — =_(2¢)%/2g; =1, A3=0, Ri = — (14b)
from simulations corresponding to the less realistic case of 12 |va|
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o
¢ S FFH, 08

0.1 . .

0.1 1.0 10.0 100.0
Ri

Fig. 5. Same as Fig. 4 but with two different values of the parameter
C=3 (dashed), 6 (solid) to show the weak dependence on such a

-1 IIIII 1 1L IIIIII 1 11 IIIIII 1 11 IIIIII 1 1 parameter'
1 10 10 10
Ri Thus, condition (Eg. 1c) becomes:
Fig. 4. Richardson number dependence of the two ratios in 2 3
Eq. (15a, d). The first ratio, represented by full circles with error Ri > m ~2x10 (149)

bars, correspond to updated results from Fox-Kemper’ Comments
to our manuscript during the Discussion phase: Ocean. Sci. DisNext, we compare Eq. (13b) with the FFH data and recall
cuss. 6, C916-C926, 2008itp://www.ocean-sci-discuss.net/6/  hat in their Fig. 14e the authors plot the ratio:
The results of the present model given by Eq.(15e) witt6 are

shown by the full line. The blue line corresponds to the FFH pa- Fy(datg

rameterization=1. A(daty = Fy(FFH) (152)
where:
The solution of Eq. (7f) is then as follows: 1.2 -
62 Fy(FFH) = 0.06| f|""h“u(z)|Vubl|*, (15b)
2 _ . 2 ; _ 3/2
=Cy«| R R 2Ri/Cy ), Cy = — (2C 14
’ < PRk ) r GO — a—eha s (15¢)

If we employ the valu&’=12 that we have determined from is the parameterization suggested by FFH by fitting their sim-

the data of Capet et al. (2008), we can compute the functlonulation data. To compare the model results with the simula-

(Eg. 13b): tion data, we construct the ratio:
D(y) =P (Ri) (14d) Fy(mode)
which we exhibit in Fig. 4. We further notice that in spite A(mode) = Fy (FFH) (15d)

of the fact noted before that we have only one set of data to _r L
determineC, Fig. 5 shows that different’s have only an  1huS.A(FFH)=1, by definition (blue line in Fig. 4). To com-

overall marginal effect on the buoyancy flux in the interval Pute Ed. (15d) in our model, we notice th‘;‘t the profile)u
1<Ri <100. in Eqg. (15c) has the additional fact¢t-+5£</21) in com-

Next, we find the limits of applicability of the parameter- Parison with the profile (Eq. 13b). The difference does not
izations (Egs. 13b and 14c,d). To this end, we find the baro€Xceed 25% and we neglect it when substituting Egs. (13b)

clinic mean kinetic energy averaged over the ML defith ~@nd (15b,c) into Eq. (15d). As a result, we obtain:

using the definition (Egs. 7g, 4b and 13a): A(present model= @ (Ri) (15e)
~ 1 — 1
K = ﬂh2f72|VHb|2 = 13Km (14e)  which we show in Fig. 4 (red line). The present parame-

. . . .terization yields a good representation of the FFH simula-
Th'.s result SDC.)WS that aF the surface the mean baroc'.'mc.k"tion data especially the curvature exhibited by the data. The
netic energyk is twelve times smaller than the mean kinetic

eneravku—1i2 To compute the SM Kinetic eneray. we use agreement is somewhat worseRiz; 10° which is due to the
gyEm=3u". P 9 use of Killworth’s (2005) approximation to negleet; in

the first definition (Egs. 4b and14c) and derive that: fact, such an approximation becomes questionable VRtien
N\? . is large, that is, whelh,=N? is large. Finally, we discuss
2Ksm = )Y v (Ri) (149 \whether the FFH flux (Eq. 15b,c) without wind can represent
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the case with wind. To that end, we take the valueg@in (d) our parameterization given by Eqs. (4a—c), (7e-f),
the first of Eq. (12b) as determined from C8 simulations and (12d), is to be used in OGCMs that resolve mesoscales
substitute it in Eq. (11b) with the result: but not sub-mesoscales,

Vyb~05.10"s? (15f) (e) in a different study (Canuto and Dubovikov, 2010), we

have derived the parameterization for the tracer verti-
Substituting this result in Eq. (15b,c), and using the same cal flux for OGCMs that do not resolve either subme-
mixed layer depttk=40 m as in C8, we obtain: soscales or mesoscales.

max Fy(FFH) = 2.4- 109 m?s~3 (159)
Appendix A
If one compares this value with the value from C8 (Fig. 2):

The non-linear terms
max Fy = garmaxF) =2.108m?s3 (15h) Ou

) , As discussed in textbooks on Turbulence theories (e.g.,
one concludes that the FFH flux formula with no wind under- Batchelor, 1970; Lesieur, 1990; McComb, 1992), the

estimates the flux by about an order of magnitude, a conclug,.hagtic Langevin equation has played a major role in tur-
ston n agreemerlt with Mahadev_an and.Talndon_(2006) Whaylence modeling studies (Kraichnan, 1971; Leith, 1971;
stressed that “winds play a crgual role in |.nducmg s“bme'Herring and Kraichnan, 1971; Chasnov, 1991). Though most
soscale structure” not to mention the multifaceted and im-y, ., lence models are presented in terms of the energy spec-
portant implications on the mixed layer stratification Ca“SEdtrum which is a second-order moment, the starting point is
by the down-wind, up-wind vs. buoyancy topology described 545 the Navier-Stokes equations (NSE) presented in the
in Sect. 6. form of a stochastic Langevin equationkirspace:

_ dui(k,1) = frik,1) — va(k)k2ui(k,t) + f&%k,1) (AL

8 Conclusions
in which the non-linear (NL) term of NSE is represented by

Recently, there has been a considerable interest in suldhe two terms: the turbulent forcing(k, ) which is due to
mesoscales which are oceanic structures of O (1km) sizéhe infrared (smalk) part of the NL interactions and ultravi-
and life times of the order of days. High resolution numer- olet part which is represented by the enhankatpendent
ical simulations have been the best source of informatiordynamical viscosityv, (k)=v+v,(k), wherev is the kine-
to assess the parameterizations of SM fluxes to be used ifatic viscosity whilev, (k)is a turbulent viscosity discussed
OGCMs that do not resolve such features. If one considin Appendix B. As discussed in the references cited above,
ers that the highest resolution of about £/1 stand-alone the dynamic equation for the energy spectriltk) is ob-
OGCMs can represent structures of about 10km size which iéained by multiplying Eq. (A1) by:* (k) and integrating over
10 times larger than the SM sizes and that OGCMs employedi=K/|K|, the result being:
in thousand years runs for climate studies have resolution o 2
about P (corresponding to structures 100 times larger thanB’E(k) = Alk) = 2V () EK) + Aext (A2)
SM), it seems clear that a good deal of important physicalwhere the worka, is given by:
processes have thus far gone unrepresented in those OGCMs.

The present work presents an analytical parameterizationy (k) = k2 / dndk’ <u;(k',t) fit(kJ)> (A3)
of the SM vertical flux of an arbitrary tracer. The main fea-
tures can be described as follows: On the other hand, the general equation&gk) is given by

Batchelor, 1970, Eq. 6.6.1
(a) no other SM parameterization exists (to the best of our( . )

knowledge) that provides an analytical expression ford, E (k) = T'(k) — 2vk2E (k) + Aext (A4)
the vertical flux of an arbitrary tracer under arbitrary

buoyancy and wind (strength and direction), whereT (k) is the non-linear transfer. From Egs. (A3,A4) it

follows that:

(b) the SM parameterization by FFH does not include winds
and it is limited to the buoyancy field which cannot be

used to describe tracers such as the ones needed in thgithin the closure model developed by Canuto and

T (k) = Ar(k) — 2v,(k)k?E (k) (A5)

C-cycle models in OGCMs for climate studies, Dubovikov (1997), the form of;(k) is given by:
(c) the results of the realistic simulations by C8 and MTF IEGR) 1 k
with baroclinic instabilities and winds, are well repro- A;(k) = _r(k)T’ Er(k) = /pzv,(p)dp (AB)

duced by our model, o
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The key feature of this closure is that(k) is proportional  which is the well-known Richardson 4/3 law diffusivity
to the derivatived, E which vanishes in the vicinity of the ~¢4/3. Finally, relation (Eq. B2) shows that there is no such
wavenumbek=kg where E (k) has its maximum. This re- a thing as a unique turbulent viscosity since each eddy feels
duces the two NL terms in Eq. (Al) to the second one onlyits own turbulent viscosity. In Egs. (2e) and (3a) we are inter-

which, in the notation of Eq. (2d,e), implies that: ested in the functiom, (k)~v, (k) in the vicinity of the max-
u 2 / imum of the energy spectruki=ko. Assuming that most of
Oy =kova(ko)u', va = Xxa (A7) the energy is contained in that region, from Eqg. (B2) we de-

rive thatvdwkalKé/Z. Thus, from Eq.!(A7) it follows that:
Appendix B
PP QY = kgu' (B5)
Turbulent viscosity v (k) ¢

which is the closure form in Eq. (3a). The closure for the
Contrary to the kinematic viscositywhich does not depend tracer field is analogous.
on the size of the eddies, the turbulent viscosjtik) which
is due to the NL interactions, depends on the eddy size and its
sum tov is called the dynamical viscosityg (k)=v+v,(k).  Appendix C
The search for a suitable expression fotk) dates back
many decades and the first explicit expression is the heurisDerivation of Eq. (4)
tic one proposed by Heisenberg as discussed in Batchelor’s

book (1970, Sect. 6.6, Eq. 6.6.13), Cl Sub-mesoscale tracer field’

® Substituting Eq. (3a) into the tracer Eq. (2e), we obtain the
v (k) = J//p_?’/zE(p)l/de y=0(1) (B1)  following expression for the submesoscale tracer field:

¢ , ' - VyT

whereE (k) is given by Eq. (A2) is the kinetic energy spec- © = X +itk -4 — ) (C1)

trum whose integral over all wavenumbers yields the eddy

kinetic energyKe. As discussed by Batchelor, Eq. (B1) was where|k|=ko=r§l. As in the case of mesoscales discussed
successfully used to derive the Kolmogorov spectrum. A nonin CD5, the frequency is obtained by solving the eigen-
heuristic derivation ofi; (k) has however been lacking un- value problem mentioned below Eq. (3a) with the following
til recently with the advent of methods to treat the Navier- result (dispersion relation):

Stokes equation borrowed to a large extent from quantum

field theory. A full presentation was made by the presentw (k) =k - uq (C2)

authors in 1997 with the final result: . . .
This relation can be interpreted as the Doppler transforma-
o0 12 tion for the frequency provided that in the system of coor-
/p_zE(p)dp (B2)  dinates moving with velocity,,, the submesoscale flow is
stationary, in which case=0. Stated differently, relation
(Eg. C2) implies that, is theeddy drift velocitywhose ex-
Equation (B2) has several interesting features worth dispressjon in terms of mean fields is analogous to that for the

cussing. First, it says that an eddy of arbitrary siz&(")  case of mesoscales given in Eq. (4f) of CD6:
feels the effects of all the eddies smaller than itself, as the in-

tegral begins at k and accounts for all the wavenumbers from  _ 1,

k to infinity. Equation (B2) naturally reduces to the kine- ¢~ ~*~ T 2ter X (B = f<dis>) ©3)
matic viscosityy when the size of the eddy is very small and =2 )
k tends to infinity. Due to the presence of the kinematic vis-WNe€res=—Vub/N* is the slope of isopycnal surfaces and
cosity, Eq. (B2) is valid for arbitrary Reynolds number since 8=V /- The bracket averaging is defined as follows:

it can be rewritten as:

1

vk) = [ v+ 5

k

0 0
K12 (83) <e> = /(O)Kéf\ﬂz(z)dz//Ké{\AZ(z)dz (C4)

1/2
v (k) = v[l + Re(k)z] . Re(t) ~
If one employs the Kolmogorov spectrum

2/3) _5/3 oo . Due to the smallness of the scalecharacterizing subme-
E(p)=K 0e?/3k=5/3, one obtains in the largReregime:

soscales, the second term in Eq. (C3) is negligible and thus
3K o £2/3 in good approximation we have that:
o

1/2
16 m) ~ 3R (Ba)

Re>> 1: v, (k) = [ 1?2
e>1: v(k) (V + uy = <ii> (C5)
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which changes Eq. (C1) to the form: C3 Spectrum of the vertical SM flux

= u' - VpT U= — <f>, x=10" 1K1/2 (C6) In the dynamical Eq. (1a) one needlgFy which we shall
X +ik-u’ ' write as follows:

Relation (Eq. C2) implies that the dependence of the submey i, — /.77 + W, ~ w7/ (C14)

soscale fields om is of the form:
where in the last expression we have neglected thed€erm

Al k) = A'()8( — k - ug) €7 in accordance with the adopted approximatidnand be-
and therefore in ther, k)-space the fieldd’ depend on time ~ cause itis of a higher order in z. Substituting Eq. (C11) into
as follows: Eqg. (C10), we obtain the expression @’ which allows

us to compute, Fyy using Eq. (C14).
Al(t,k) = A'(k)exp(— ik - ugt) (C8) The strategy of computing submesoscale fluxes, which are

bilinear correlation functions, consists in computing these
functions in(¢, k)-space which, in the approximation of ho-
mogeneous and stationary mean flow, have the form:

Due to relations (Egs. C7,C8), after substituting Eq. (3a) in
Eqg. (2e), the latter may be solved in both, k) and ¢,k)
representations.

A'(t,k)B*(t,k) = A'B"*(k)§(k — K’ Ci15
C2 Sub-mesoscale velocity field’ (kOB 01 (3¢ ) (C19)

which, because of relation (Eq. C8), does not depend. on
Itis convenient to begin by splitting the mesoscale velocity The functionReA’ B* (k) is usually referred to as the density

field ' into a rotational (divergence free, solenoidal) and agf 4757 in k- -space. The spectrum of the correlation function
divergent (curl free, potential) components: A'Bis:

upk) =nup, n==k/k

i.e., the spectrum ofA’B’ is obtained by averaging
and thus the third equation in Eq. (2e) becomes: ReA’ B’*(k) over the directions ok and multiplying the re-

;o ;. sult by k. Finally, the correlation functiod’B’ in physi-

Ocw = — ik -u = —ikup (C10)  y space is obtained by integrating over the spectrum. Fol-
To determina:r p, we substitute the second relation (Eq. 3a) lowing this procedure, from the first of Eq. (C6) and using
in the second equation in Eq. (2e) and derive the followingEQs. (C9,C10), we derive the relation:
expressions:

Re w/zt/*(k) = (C17)
up = fHx + ik - Wur (C11) , N o
) _ Im[kx (x + ik.u)[ﬁDu;(k)nxez+|uD|2(k)n]}- VuT
iko—"p’ ~ _ _
UR="7 1+ f2(x + ik -0)% u=umsu= (C12) Next, from Egs. (C11,C12) we derive the following relations:

These relations, as well as Eq. (C6), are valid in bathK)  Re upuj(k) = xfurl2(k), (C18)
and ¢,k) representations. Below, we will use them in the _

(t,k) representation together with Eq. (C8). Due to the third Im upuk(k) = £~k - w|ur|?(k)

relation of Eq. (3a), the further use of Egs. (C11) and (C12) L L

is considerably simplified under the condition lup2(k) = x> f2lur|2(k), |u'|2(k) (C19)

Ksu/K > 1 ©13) = lupPd) + lurlP) = A+ X2 DlurlP(k)
which allows us to neglect the second terms in the bracket
in Egs. (C11) and (C12). Condition (Eq. C13) coincides with
Eqg. (1c).

%ubstituting Eq. (C18) into Eg. (C17) and averaging over the
directions ofk, we obtain the spectrum af’;t’(k). Under
conditions (Eq. C13), we get:

Wt (k) (C20)

~ 17 2N~ 2, \~ —
= — X 21 " urP i xe + Tuo| 0ii|- Va7
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where: Canuto, V. M. and Dubovikov, M. S.: Mixed layer sub-mesoscale
1 parameterization - Part 2: Results for coarse resolution OGCMs,
wklugl2(k) = 2(1+ X2 f*Z) E(), nkluplP(k) (C21) Ocean Sci. Discuss., 7, 1289-1302, doi:10.5194/0sd-7-1289-
2010, 2010.

_1 1 Capet, X., McWilliams, J. C., Molemaker, M. J., and Shchepetkin,

= 2(1 + szfz) Ek), E(k) = Enklu/lz(k) A. F.: Mesoscale to submesoscale transition in the California cur-
rent system, Part I: flow structure, eddy flux, and observational

where E (k) is the spectrum of the total (rotational + diver-  tests, J. Phys. Oceanogr., 38, 29-43, 2008.

gent) eddy kinetic energy. Due to relation (Eq. C14) the Chasnov, J. R.: Simulation of Kolmogorov inertial subrange using

left hand side of Eq. (C20) multiplied by is the spectrum dea;olrgfrl\c/)l\éi?esu?ggd Tﬂg‘ézlé P(;]ySF.i;l‘]Lg?SAAs' ﬁi;g:’ t%ll' ]

of the z-derivative of the vertical flug, Fy (k). Thus, mul- y gut, &, P e o u

L . . dicone, D.: Mixed layer depth over global ocean: an examination
tiplying Eq. (C20) byxk, using Eg. (C21), we obtain the of profile data and a profile-based climatologyGeophys. Res

foIIO\_/ving expression for the spectrum 6fFy (k) near the 109, C12003, doi:10.1029/2004JC002378, 2004.

maximum of the energy spectrum: Fox-Kemper, B., Ferrari, R., and Hallberg, R.: Parameterization of
_ mixed layer eddies I: theory and diagnostics, J. Phys. Oceanogr.,

0.1y (k) = @(k) - VT (C22) 38, 11451165, 2008.

where: Fox-Kemper, B. and Ferrari, R.: Parameterization of mixed layer

eddies II: prognostics and impact, J. Phys. Oceanogr., 38, 1166—
®(k) = — 2E(b)k5x > (C23) 11792008 . . _
Herring, J. R. and Kraichnan, R. H.: Comparison of some approxi-
1 2 21~ 2 21~ mations for isotropic turbulence, in: Statistical Models and Tur-
[Xf A+xf D) Tuxe+A+x 9 ”] bulence, edited by: Rosenblatt, M. and Van Atta, C., Springer-
) o Verlag, New York, 147-194, 1971.
Assuming that the spectray (k) and E (k) have similar  Hosegood, P. J., Gregg, M. C., and Alford, M. H.: Restratification

shapes, integration of Egs. (C22,C23) okeeduces to the of the Surface Mixed Layer with Submesoscale Lateral Density
substitution ofE (k) and Fy (k) with the eddy kinetic energy Gradients: Diagnosing the Importance of the Horizontal Dimen-
Kswv andFy in physical space. Thus, we get Eq. (4a,b). sion, J. Phys. Oceanogr., 38, 24382460, 2008.
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